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SUMMARY 
Most receiving waters, such as lakes and open reservoirs, have large plan dimensions with respect to their 
depth. In such cases, the flow may be nearly two-dimensional and the depth-averaged Reynolds equations 
are appropriate. This paper presents a new version of the governing equations in curvilinear depth-averaged 
stream function and vorticity transport ($, o) form appropriate for non-orthogonal computational meshes. 
The equations are discretized using finite differences and solved using successive over-relaxation for the 
depth-averaged stream function equation and an alternating direction implicit scheme for the vorticity 
transport equation. Results from the numerical model are validated against data from flow past a backward- 
facing step and jet-forced flow in a circular reservoir. The results indicate that the ($, o) form of the shallow 
water equations may be useful for applications where the free surface can either be assumed horizontal, or is 
known a priori. 
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INTRODUCTION 

Water engineers often deal with separated, free-surface flows where the depth is relatively shallow 
compared with the horizontal dimensions. In cases of wide rivers and lakes where vertical 
stratification effects are negligible and bed processes, such as sediment transport, are not under 
consideration, it is reasonable to use the depth-averaged Reynolds equations (otherwise known as 
the shallow water equations) to  model the flow behaviour. 

Perhaps the first operational estuarine hydrodynamic model based on the shallow water 
equations was developed by Leendertse,’ who used a semi-implicit (alternating direction implicit) 
technique on a two-dimensional (2D) space-staggered mesh. Leendertse’ extended the hy- 
drodynamic model to incorporate water quality simulation in estuaries and coastal seas. Many 
subsequent models have been based on Leendertse’s scheme. Kuipers and VreugdenhiP com- 
puted steady 2D flow patterns using Leendertse’s scheme, paying particular attention to second- 
ary flow phenomena. Using the same scheme, Vreugdenhil and Wijbenga4 modelled flow patterns 
in rivers, using the results to judge the effects of diking and dredging in the flood plains of the 
Dutch river system. The shallow water equations were solved for flow in open channels by 
Rastogi and Rodi.’ They included a depth-averaged k-c turbulence model and then extended the 
hydrodynamics to predict heat and mass transfer. Various authors have examined phase prob- 
lems which can arise when semi-implicit (alternating direction implicit) schemes are applied to 
cases involving irregular boundaries. Wolfd reported that alternating direction implicit (ADI) 
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schemes lose symmetry at  closed boundaries and wherever velocities are specified. With reference 
to a fine-grid model of the Bristol Channel, Wolf emphasised that dissipation and instabilities 
were created at  corners of the stepped boundary, before diffusing into the interior solution. 
Stelling et al.7 demonstrated that the numerical propagation speed of waves in an AD1 scheme 
depends not only on the time step and grid size, but also on the geometr and bathymetry. They 
found that the Courant number must be restricted to no more than 4J in order for a wave to 
propagate properly through a zig-zag channel (i.e. along an irregular stepped boundary). Similar 
problems arise with AD1 schemes in the case of bathymetric irregularities, as discussed by Wilders 
et a/.' for the case of a rectangular basin containing a deep S-shaped channel. Wilders 
et a!.' proposed a fully implicit scheme which utilized the conjugate gradients squared method 
and eliminated the foregoing geometrical phase effects. 

Although the majority of shallow flow solvers have been based on finite difference discretiz- 
ation, finite element procedures and the method of characteristics have been utilized successfully. 
Taylor and Davies' and Faraday et al." employed a finite element scheme to calculate 2D flows 
in estuaries. Lai" utilized the method of characteristics for advection terms and simulated flow in 
a hypothetical bay. Benque et a1.I2 produced an efficient method for computing tide-generated 
currents by solving advection by the method of characteristics, diffusion by an alternating 
direction implicit (ADI) approach and linearized wave propagation terms by a modified iterative 
alternating direction procedure. 

Rather less literature is available concerning the shallow water equations in mapped or 
curvilinear form. Boericke and Hall'' used algebraic translations to map the irregular shorelines 
of an estuary onto a rectangular co-ordinate space. Johnson and T h ~ m p s o n ' ~  presented non- 
orthogonal boundary-fitted (curvilinear) versions of the vertically integrated equations of motion 
and sediment transport. J o h n ~ o n ' ~  solved the non-orthogonal shallow water equations written in 
terms of Cartesian primitive variables (i.e. depth-averaged velocity components and surface 
elevation) using a semi-implicit finite difference scheme and tested it on an idealized estuary. 
Using a fully implicit scheme, Sheng and Hirsh16 solved the non-orthogonal shallow water 
equations with contravariant velocity components and compared predictions of wind-driven and 
tidal circulations with analytical solutions. Spaulding' predicted the M tidal-induced circula- 
tion in the North Sea using a semi-implicit non-orthogonal curvilinear formulation of the 
vertically averaged shallow sea equations. For validation purposes, Spaulding also considered 
tidal forcing in an exponential frictionless channel, long waves in a wedge-shaped basin, and 
wind-induced set-up in a complex basin. Willemse et al." used a stable, semi-implicit finite 
difference procedure devised by Stelling" to solve the orthogonal shallow water equations. 
Orthogonal systems have the advantage that the transformed equations are simpler than the 
corresponding non-orthogonal expressions, but the constraint of orthogonality reduces flexibility 
in determining grid point distribution, especially at the boundary. Wijbenga2' used a similar 
orthogonal grid to calculate flood levels and flow patterns in the Waal and Ijssel rivers. Hauser et 

and Raghunath et ~ 1 . ~ ~  solved the linearized shallow water equations in non-orthogonal 
form by integrating the Cartesian velocity components and surface elevations on two staggered 
meshes. They compared predictions with analytical solutions of flows in a circular ring and 
rotating cylindrical containers. Recently, Borthwick and Barber23 obtained solutions of the full 
shallow water equations for uniform flow in a rectangular channel and jet-forced flow in 
a circular reservoir. They employed a semi-implicit, finite difference scheme on a single staggered 
mesh. HervouletZ4 used a combination of the method of characteristics for advection and finite 
elements for diffusion and propagation to solve the curvilinear shallow water equations. Predic- 
tions were compared with classical analytical solutions, experimental data and field measure- 
ments, before calculating backwater effects due to bridges. 
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The depth-averaged stream function and vorticity-transport (+, w )  equations provide a viable 
alternative to the primitive-variable versions of the shallow water equations. In effect, the 
three-equation primitive-variable system is reduced to two equations by the elimination of the 
pressure term in the momentum equations through cross-differentiation and subtraction. Solu- 
tion of the (I), w )  system may be carried out efficiently as a combination of initial and boundary 
value problems on a non-staggered mesh. The (+,o) approach has a serious disadvantage in that 
the boundary conditions are not always straightforward to specify, especially as values of 
depth-averaged vorticity are not easy to interpret intuitively. In addition, it is assumed that 
surface slopes are small and that the amplitude of gravity waves is unimportant. 

Very few references can be found to spatially discretized depth-averaged stream function and 
vorticity transport models. CodellZS solved for $ and o using a time-stepping alternating 
direction implicit scheme on a staggered grid and simulated flow near a hypothetical power plant 
intake. Chalmers26 and Ball et d2’ used the depth-averaged ($, o) equations in Cartesian form 
to compute flow fields around estuarine structures. As far as can be ascertained, there are no 
references for the solution of the depth-averaged (+, o) equations in curvilinear form. However, 
Oliver and Miller” produced a model for predicting 2D, steady-state flows and heat transfer by 
solving the non-depth-averaged 2D non-orthogonal stream function and vorticity transport 
equations. They tested their model against well-documented flows such as forced convection in 
parallel plate ducts and natural convection in a concentric annulus. 

In this paper, the depth-averaged ($, o) equations are derived and a computational solution 
procedure outlined. Results from two series of validation tests are presented: first, the depth- 
averaged ($, o) solver is used to simulate laminar flow past a backward-facing step in a rectangu- 
lar channel and predictions compared with experimental and other numerical results. The test 
enables an assessment to be made of the level of artificial viscosity in the scheme within the range 
of Reynolds numbers considered. Second, in order to examine the effect of terms relating to grid 
curvature, the depth-averaged ($, o) program simulated jet-forced flow in a circular reservoir. 

GOVERNING EQUATIONS 

The Reynolds equations express time-averaged conservation of mass and momentum of a 
Newtonian fluid and may be reduced to a 2D form appropriate to relatively shallow (vertically 
mixed) flows by integrating over the vertical dimension, z. The integration takes place from the 
bed, z = - h, to the free surface, z = c, defined in Figure 1, and all parameters are expressed in 
terms of depth-averaged values. A major assumption is that vertical fluid accelerations are 
negligible compared with gravity. Consequently, a hydrostatic pressure distribution is estab- 
lished, and, by neglecting gradients of atmospheric pressure at the free surface, the gradients of 
mean pressure aplax and splay are directly proportional to a l lax  and allay.  

We define the depth-averaged velocities, U and V, as 
c 

- h  D - h  
udz and V = -  jc vdz ,  

where D is the total water depth (D = h + 0, and u and v are temporal mean velocity components 
acting in the x- and y-directions, respectively. Integration of the Reynolds equations and 
application of the Leibnitz rule with appropriate boundary conditions for the surface and bed, 
yield the depth-averaged mass and momentum equations (Reference 3) as 

(24  
ao a ( m )  ~ ( v D )  -+- +-=o, 
at ax a Y  
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Figure 1. Definition sketch 

and 

The above shallow water equations conserve mass and momentum in terms of the depth- 
averaged horizontal velocities U and V. In equations (2) ,  f is  the Coriolis parameter (f=2Rsin 8, 
where SZ is the angular velocity of the Earth and 8 is the geographic latitude), TbX and zby are 
components of bottom frictional shear stress, z,, and zWy are components of the surface stress 
(due to wind), g is the acceleration due to gravity, and p is fluid density. Deviatoric fluid stresses 
and terms resulting from integration over depth are grouped together (as in Reference 3) to give 
the so-called effective stresses Txx, Txy, Ty!. In its raw state, each effective stress is made up of three 
distinct parts. The first is a laminar viscous contribution and may be judged negligible in 
turbulent flow regimes. The second term represents turbulent stresses which arise from the 
time-averaging procedure. The third results from integration over the depth and describes 
momentum transport due to non-uniform vertical velocity profiles (i.e. deviations between local 
velocity and depth-averaged velocity). In hydrodynamic systems where secondary currents and 
stratification are insignificant, this final contribution is generally small compared to turbulent 
momentum flux and is often neglected (see Reference 5). The effective stresses may therefore be 
approximated by the turbulent stress terms only, and Boussinesq’s eddy viscosity concept 
invoked to give 

JV JU JU aV 
TxX=2pvl--, ax T x y = p v , [ ; j ; + ~ ]  and TyY=2pv l - ,  dY (3) 

where v ,  is the eddy viscosity coefficient, and is equivalent to a depth-averaged value (in order to 
produce the correct form of the effective stresses when integrated over depth). 
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In certain cases of wide rivers, shallow lakes and reservoirs where the free surface is invariant 
with time and nearly horizontal, a fixed-lid approximation (that is, is zero) may be used to 
reduce the above three equation system to two equations, with the depth-averaged stream 
function, $, and vorticity, o, as dependent variables. It should be noted that the rigid-lid 
approximation filters out gravity waves, and therefore the following approach cannot be used for 
tidal estuaries, etc. 

We define the depth-averaged stream function, $, from the following expressions: 

which satisfy continuity. After applying the Leibnitz rule, and substituting for depth-averaged 
velocities, the depth-averaged vorticity may be written as 

The depth-averaged stream function and vorticity have essentially the same meaning as their 
3D non depth-averaged counterparts. Here, $ represents local values of the integrated depth- 
averaged velocity field, whereas o, though now a 2D scalar quantity, since it acts about a vertical 
axis, is directly related to the rotationality of the flow at a particular point. 

Substitution of equations (4) into equation ( 5 )  yields an elliptic Poisson equation for stream 
function: 

a [ L s]+d [ L 9]+"4 
ax  ax ay ~ a y  

This equation indicates that the depth-averaged vorticity is effectively equal but opposite in sign 
to the curvature of the stream function (the sign convention is anticlockwise positive). 

The depth-averaged momentum equations (2b) and (2c) are reduced to a single equation after 
cross-differentiation and subtraction in order to eliminate the free-surface gradients a ( / a x  and 
a{/ay. After some rearrangement, the 2D depth-averaged vorticity transport equation is given by 

[E a,;] [:y('d.d) :x(;)] 
ao a. a. 
-++-++-+(o+f) -+- + - - -- - 
at ax ay +-)I--- a(DT,,) 1 a [- 1 ( T + 4 = 0 .  a(DT,) d (DT ) 

aY p a x  D aY 
(7) 

This equation is identical in form to that presented by Kuipers and Vreugdenhi1,j except for their 
use of the opposite sign convention for vorticity. The depth-averaged vorticity transport equation 
governs the transport, generation and dissipation of vorticity. As discussed by Kuipers and 
Vreugdenhil, the advection of vorticity by the mean flow is governed by the second and third 
terms. The fourth and fifth produce vorticity from the divergence or convergence of the mean 
flow, and by the action of wind stresses. Dissipation due to the bottom shear stress is given in the 
sixth term. Finally, the remaining two terms may be regarded as net moments of the stresses 
Txx, T,, and T,, relative to a vertical axis and can generate vorticity in either direction. 

The above stream function equation (6) and vorticity-transport equation (7) are converted into 
curvilinear form using Jacobian transformations described by Johnson and Thompson. l4 For 
brevity, the subscripts t; and q will be used to denote partial derivatives in the following equations. 
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The curvilinear mesh is generated as the solution of 

ax,, - 2Pxe,, + y x,,, + J ( P x  , + Q x,) = 0 

and 

U Y , ~  - ~ P Y  5 1  + YY,, + J (PY r: + QY 1 ) = O ,  
where 

and J is the Jacobian of the transformation given by 

J=xcY, -x ,Y , .  

In equations (8), the functions P and Q control the co-ordinate line spacing, allowing the 
generation of nearly square curvilinear meshes. Since the computations are to be carried out in 
the transformed rectangular plane, the governing equations must also be transformed. For 
example, the Cartesian depth-averaged velocities, U and V, are given in ( t , ~ )  form as 

and the transformed depth-averaged vorticity is obtained as 

1 
J w = - ( x ,  u, - x, u, + y, v, - y ,  5). 

After rewriting equation (6) in the expanded form in order to facilitate straightforward 
transformation of second derivative terms, the transformed depth-averaged stream function 
equation may be obtained as follows: 

a*,,-28$,,+Y$,,+(a+aD)*,,+(r + ?Id$, + ODJ = 0, (11) 

where a, 8, y and J have been defined previously, and a, aD, z and t D  are defined in the appendix. 
In a similar manner, the transformed depth-averaged vorticity transport equation is given by 

Details of the coefficients A, B, r, S ,  SDx, T, TD,,  etc., are given in the appendix. The terms t, and 
ry, which appear in the third and fourth brackets, are the combination of wind and bed stresses in 
the x-  and y-directions, respectively, i.e. 

Zx=ZwX-Zbx and T y = Z w Y - ? b y  . 
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Equations (1 1) and (12) form a pair of coupled equations relating stream function and vorticity; 
they are considerably more complicated than their counterparts in Cartesian co-ordinates, but 
are more straightforward to discretize. 

The depth-averaged effective stresses are transformed to give 

where v ,  is the eddy viscosity coefficient. As Kaarz9 showed, significantly longer expressions for 
the effective stresses may be derived in terms of the stream function. 

NUMERICAL SOLUTION 

The grid consisted of a non-staggered square mesh of spacing A r = A q =  1 in the transformed 
plane where all flow variables (+, w, etc.) and metric parameters ( J ,  a, p, etc.) are stored at  each 
node. Mesh indices, i = 1, . . . , M and j =  A, . . . , N, are defined such that l= i and q =j. In order 
to generate the grid, equations (8a) and (8b) were discretized using central differences and solved 
iteratively using successive over-relaxation for prescribed boundary values of x and y until the 
normalized error was less than 

The transformed depth-averaged stream function equation (1  1) was also discretized using 
second-order accurate central differences to give 

and solved using successive over-relaxation. 
An AD1 procedure was used to update the depth-averaged vorticity values over two half time 

steps. At the nth time increment, the time is defined to be t = n  At, where At is the time step. In the 
first half time step, from time t = n  At to t = ( n + $ ) A t ,  the depth-averaged vorticity transport 
equation is released in the I;-direction while holding the q-derivatives fixed, discretized using 
forward differences in time and central differences in space (except for the advection terms, 
o~+,,-o,+~, which are treated using the first-order donor cell method), and rearranged to give 

(15) n+ 1 / 2  n+ 112- n+ 112 
- a i w i -  112, j + b i  0 i . j  C i w i + 1 / 2 , j = k i  3 

where 
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and 

and 

Equation (15) is applied at each grid point along a given j-line to give a set of M - 2 linear 
simultaneous equations. These are expressed in tridiagonal matrix form and solved recursively. In 
the second half time step, from t = (n + +)At to t =(n + 1)At, the discretization procedure involves 
releasing derivatives in the q-direction while keeping the <-derivatives fixed, giving 

and 
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in which the terms R l i , j  to R8i,j are the same as for the first release, except that the superscripts 
n become n + 1. 

In each half time step, the spatial discretization error is of the order of (At2 ,  A q 2 ) .  The AD1 
method may also give the time dependency with an error of the order of (At2) provided the terms 
at n - t i  in the first release, and n+ 1 in the second release, are evaluated correctly. It should be 
noted that true second-order time accuracy may only be achieved by an iterative procedure 
coupling the solution of the depth-averaged stream function and vorticity transport equations. 
For the results presented in this paper, the right-hand terms in equations (15) and (16) were lagged 
in order to cut down on the computational costs; this increased the error in temporal accuracy to 
first order, but had marginal effect for flows which tend to steady state (considered later). 

As mentioned above, all spatial derivatives in the above equations, except for the advection 
terms given by q$ , , -o~ , ,+~.  were discretized using central differences. In order to achieve 
stability, but without undue artificial diffusion, three approaches were adopted for the advection 
terms; namely, the donor cell method, second-order upwind differencing and Stelling’s’’ weighted 
averaging scheme of 3 central plus 3 upwind differencing. Obviously, each scheme affects the 
coefficients Q, b, c and k .  For example, in the donor cell method (which turned out to be the most 
successful for the cases considered here and is used to produce equations ( 1  5) and (1  6) above), the 
advection terms are discretized over one cell length giving 

~ t + q - a q + t = + q ~  l i +  112. j - + q a  l i -  112. j-$<m ti,  j +  112 +$€a l i ,  j- 1/2 9 

where 

and 

Similar expressions are obtained for wi, j+ 1/2 and mi, 112 depending on the sign of $€ (and hence 
the appropriate contravariant velocity component). In operation, the ki  and kj coefficients are 
easily computed, but care needs to  be taken with the a, b and c coefficients which depend on the 
sign of +,, in the t-direction release and Jlc in the q-direction release. Although the donor cell 
method is strictly only first-order accurate, it possesses the transportive property and may 
approach second-order accuracy if the vorticity vanes slowly in space. Further details of the 
implementation of the donor cell method, the second-order upwind differencing and weighted 
averaging scheme are given by K a a ~ ~ ’  

In order to drive the flow, the stream function was set to zero at one wall boundary and equal 
to UrDbl at the opposite wall (where U, is the inlet flow velocity, D the depth and b, the inlet 
width). No-slip wall vorticity conditions are derived by simplifying the depth-averaged stream 
function equation (1 l), depending on which +-derivatives are zero, and applying Taylor series up 
to terms of order (Aq2) to give expressions such as 

which applies to a lower wall located at j =  1, say. Vorticity values at convex corner points were 
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determined by treating the point as if it were at a ( =constant wall during the (-release, and at an 
q = constant wall during the q-release. For the backward-facing step, the vorticity at the concave 
corner is zero by definition. For the circular reservoir, the concave corner points correspond to 
inflexion points in the physical domain and so vorticity values were obtained by extrapolation. It 
should be noted that the above no-slip condition does not cater properly for a turbulent 
boundary layer; in such a case, either a more realistic condition related to a suitable wall law, or 
else a partial-slip condition should be applied. 

Parallel flow was assumed at open (inflow/outflow) boundaries. For example, flow normal to 
lines of constant ( is determined by df/dn(()=n(()*Vf=O, where n(() is the unit vector normal to 
5, and frepresents JI or w. This may be expressed as a .  = /?fq and discretized using second-order 
differences to give 

for a typical (left hand, i =  1 say) flow boundary. 
Interior values of the depth-averaged effective stresses given by equation ( 1  3) were determined 

from their central difference discretizations. At boundaries, the effective stresses were calculated 
using second-order forward and backward differences. Very high velocity and vorticity gradients 
occur near the boundary, and five-point Lagrange interpolation was applied to calculate effective 
stresses one point out from the boundary giving, e.g., 

L,+ ,.J = t c Txx,. + 6Txx,+2.J - 4 L , +  ,,J + TXX,+,.,l (9) 
at a point immediately adjacent to a left-hand boundary. 

The potential flow solution was used as a starting condition for the flow computations. 
Everywhere w was set to zero, and the initial w-field determined by solving equation (1 1). The 
computations then proceeded in a cyclic time-stepping manner, updating vorticity, stream 
function and effective stresses until steady state was judged to have occurred. 

RESULTS 

Two validation tests are considered here. First, the (JI, o) computer model is used to simulate 
laminar flow past a backward-facing step. In this case, the recirculating flow is dominated by the 
non-linear advection terms in the vorticity-transport equation and it is possible to identify the 
level of artificial viscosity generated by the scheme. In the second case, jet-forced flow in a circular 
reservoir is simulated at low Reynolds numbers. This geometry provides a severe test of the 
curvilinear system, because the perimeter is everywhere curved with vertical walls, and the flow is 
separated. The results are compared with analytical solutions, alternative numerical simulations 
and experimental data. 

All computations took place on a 16 MHz IBM PS/2 Model 80 microcomputer containing 
2 Mb RAM without vector facility. The microcomputer architecture consisted of an 80386DX 
processor with an 80387 mathematics co-processor. The computer program was written in 
Fortran 77 using double precision. 

Laminar flow past a backward,facing step 

Figure 2 illustrates laminar flow past a backward-facing step, which is characterized by 
separation at the step followed by a recirculation zone. A measure of computational accuracy is 
given by the prediction of the reattachment point, defined by a vorticity sign change. The zones of 
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I Lparation streamline 

Recircdation zone 

Reattachment point 

YI  
-Reattachment length - Ix 

Figure 2. Flow past a backward facing step 

Figure 3. Computational grid 

recirculation reduce in length when artificial viscosity (arising from poorly discretized advection 
terms) overwhelms the correct effective viscosity of the flow. Provided the flow is laminar, the 
reattachment length increases with Reynolds number; typical references include the work of 
O’Leary and M~el le r ,~’  Denham and Patrick,” Atkins et ~ 1 . ~ ~  and Hackman et ~ 1 . ~ ~  

The computational geometry consists of a rectangular channel of length 14 m, inlet width 2 m 
and step dimension of 1 m. The upstream boundary is one step dimension, h, in front of the 
expansion, whereas the outflow boundary is more than 5 h  beyond the reattachment point, 
in accordance with advice given by Hackman et aLJ3 To check grid resolution, two meshes are 
used; one a coarse grid with 71 x 16 nodes, where Ax=Ay=O.2 m, the other a fine grid (shown in 
Figure 3) with 141 x 31 nodes, where Ax=Ay=O.l m. Stream function values of 0 and 1 are 
assigned to the upper and lower walls, respectively, and the depth set to 1 m, equivalent to an 
average inlet velocity of 0 5  m/s. Wind and bed shear stresses are zero. Time steps are determined 
from the Courant condition to be At =0.4 and 0.2 s for the coarse and fine meshes, respectively. 
Results are presented for inlet Reynolds numbers between 46 and 229, corresponding to the 
experiments of Denham and Patrick.31 Here, the inlet Reynolds number, Re,,  is defined by 

UI h Rel=-  
V 

where U, is the average inlet velocity, h is the step dimension and v is the kinematic viscosity 
coefficient. 
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Figure 4 gives stream function, vorticity and velocity plots of the steady-state flow pattern 
using donor cell differencing, at Re,  = 229. As would be expected, the main flow pattern consists of 
a primary recirculation zone immediately behind the backward-facing step, adjacent to a fast 
throughflow. Vorticity contours have high magnitude and steep gradients at the lower wall 
immediately preceding the step and on the upper wall near the inlet. From these regions, loops of 
vorticity spread out into the field. The variation of vorticity on the upper wall, reflected in the 

1.0 - 
-3.9 0 4 

0.6 0.7 
0 4 0.5 

0 

Figure 4. Flow pattern for ReI=229 (donor cell method): (a) stream function contours; (b) vorticity contours; 
(c) velocity vectors; (d) detail of structure in gyre 
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velocity plot which shows a slowing down of fluid in this region, points to possible recirculation in 
this location. A small secondary gyre occurs in the lower left-hand concave corner caused by the 
sudden change in geometry. 

The effect of grid resolution on reattachment length for predictions using the donor cell method 
is illustrated in Figure 5. In general, the fine-grid simulations show good agreement with 
experimental and numerical data obtained by O'Leary and MuellerJ0 and Denham and 
Patrick.jl For the coarse grid, recirculation is underpredicted at Reynolds numbers greater than 
about 100, thus indicating the presence of artificial viscosity caused by truncation errors whose 
magnitude increases with Reynolds number. The finer mesh consistently produces longer recir- 
culation lengths than Denham and Patrick's experimental data, even at higher Reynolds num- 
bers. This may be due to asymmetry in the experimental inflow conditions (discussed later). 
Similar numerical studies by Hackman et aLJ3 also gave longer recirculation lengths than 
measured experimentally. It should be noted that further grid refinement was not possible in this 
study due to microcomputer memory limitations. 

The reattachment length was used to compare the effectiveness of the three discretization 
schemes for the non-linear advection terms in the depth-averaged vorticity transport equation. 
For ReI< 125, all three methods produced nearly identical results which is to be expected because 
the level of artificial viscosity was relatively small. Weighted second-order and donor cell 
differencing continued to give very similar reattachment lengths throughout the range of 
Reynolds numbers considered. This may be because the donor cell method took into account 
values at half grid spacings on either side of each mesh point and approached second-order 
accuracy where the spatial variation of vorticity was small. For Re,> 125, pure second-order 
differencing produced smaller recirculation zones than either weighted differencing or the donor 

R e a t t a c h m e n t  

( m )  

I 

f 

n 
0 50 100 150 200 250 

Inlet  R e y n o l d 8  n u m b e r  

Denham and Patr lck  (1974). e x p e r l m e n t 8 l  d a t a  
X O ' L e a r y  a n d  M u e l l e r  (1969). numerioai dat8 
0 O ' L e a r y  a n d  M u e l l e r  (1969) .  e x p e r l m e n t a l  data  

# P r e s e n t  r e s u l t s .  141x31 maeh. d o n o r  cel l  method 
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Figure 5 Dependence of reattachment length on inlet Reynolds number 
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Figure 6. Stream function contours for Re,= 2 2 9  (a) st el ling'^'^ weighted differencing scheme: (b) second-order upwind 
differencing scheme 

cell method, which indicates that artificial viscosity is higher in the pure second-order scheme. 
Figure 6(a) shows stream function contours obtained using Stelling’s’’ weighted averaging 
scheme for the advection terms. No upper recirculation may be discerned. However, for the pure 
second-order upwind scheme, the streamline bounding the smaller primary gyre has a steeper 
gradient near the reattachment point and separation occurs at the upper wall in Figure 6(b). It 
should be noted that vorticity is very nearly zero in the region of the upper separation zone; this 
may make stream function values sensitive to numerical round-off errors which could also play 
a part in disturbing the flow pattern. 

Figure 7 illustrates velocity profiles along the channel for Rel=73. The predicted velocity 
profile across the inlet is very similar to the measured values. At higher Reynolds numbers 
however, the measured inlet profiles became increasingly skewed towards the step (which 
Denham and Patrick attributed to asymmetry of the inlet), whereas predicted values retained 
their parabolic shape. This may explain the difference between experimental and predicted 
reattachment lengths. Moreover, Atkins et aL3’ have demonstrated that rather longer recircula- 
tion lengths are obtained when parabolic, instead of measured, profiles are used. 

Jet-forced,flow in a circular reservoir 

The second validation test concerns jet-forced flow in a flat-bottomed circular reservoir at low 
Reynolds numbers. Two geometries are considered herein; one where inlet and outlet channels 
are diametrically opposite, the other where they are asymmetric. In this case, we define the inlet 
Reynolds number to be 

Ulbl Rel=--, 
2 v  

where V ,  is the mean inlet velocity, bl is the inlet width and v is the kinematic viscosity coefficient. 
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Figure 7. Velocity profiles along channel for ReI=73  

Results using Dennis ‘34 geometry. The first geometry considered is identical to that used by 
Dennis,34 Barber3’ and Borthwick and Barber36’23 where a single inflow and a single outflow are 
positioned directly opposite each other. Dennis34 solved the two-dimensional Navier-Stokes 
equations in polar form by substituting Fourier series for the stream function and vorticity. He 
obtained an exact analytical solution for Stokes flow (where Re, =O) .  For non-zero Reynolds 
numbers, Dennis used a numerical technique to solve the truncated Fourier series and presented 
results for inlet Reynolds numbers of 2, 5 and 10. He found that no recirculation occurred for 
Re1<2, but the flow separated at the inlet by Re,=5.  Borthwick and Barber36 repeated Dennis’ 
simulation at Re, = 10 and obtained almost exact agreement with Dennis’ stream function 
contours, using a finite difference discretization of the 2D stream function and vorticity transport 
equations. To avoid artificial viscosity, the advection terms were discretized using central 
differences. Unlike Dennis, Borthwick and Barber presented vorticity and velocity distributions. 
In order to verify the depth-averaged ($,a) model, flow at Rel=10 in a circular reservoir 
corresponding to Dennis’ geometry is selected herein. This case covers the effects of large vorticity 
gradients as well as the influence of the non-linear terms in promoting separation. Moreover, the 
geometry necessitated the use of a non-orthogonal mesh. For the same reasons, Barbe?’ also 
used this case to verify his depth-averaged ( U ,  V, [) scheme. 

Figure 8 illustrates the geometric layout used for the flow simulations, where inlet and outlet 
stems of width 0.157 m and length 0.3 m are located opposite each other. The stems are included 
in order to allow some boundary layer development in the passageways. The radius of the 
reservoir, R,  is 0.75 m, the depth is 0.1 m and the mean inlet velocity, V,, is 0.1, m/s, equivalent to 
stream function values of 0.0 and 0.001 568 on the lower and upper walls, respectively. Figures 9(a) 
and 9(b) show the transformed (g, q )  and physical (x, y )  meshes generated using a relatively fine 
61 x 61 grid to cover the circular basin. The circular perimeter of the physical mesh contains four 
points of inflexion at 744, 37~14, 5n/4 and 7 4 4  radians. These inflexion points correspond to the 
corners of the transformed (& q )  mesh. 
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\ 

b,=O 

Figure 8. Reservoir definition based on Dennis’34 geometry 

The steady-state flow pattern obtained at Rel= 10 is shown in Figure 10. A time step of 0.2 s 
was employed and steady state reached by t=80 s, requiring 27 h CPU time. At such a low 
Reynolds number, the severe vorticity gradients in the vicinity of concave wall corner points led 
to grid-scale oscillations which could only be cured by the application of a spatial filter every five 
time steps after the separation streamlines passed close to the corner points in the transformed 
mesh. The spatial filter is described by KaarZ9 and consisted of weighted averages of I) and o at 
the point in question and its neighbours. Such problems were not encountered by using a coarser 
31 x 31 grid where numerical diffusion acted to damp out instabilities. Even so, the results 
obtained using the 61 x 61 mesh are in almost exact agreement with Barber’s3’ (U, V, (‘) model. 
The flow pattern is characterized by two symmetric zones of recirculation which are established 
either side of the throughflow jet which gradually fans out into the reservoir before exiting 
radially into the outlet stem. Stagnation regions are evident within the recirculating gyres. The 
throughflow contains the largest velocity components and is aligned more or less directly towards 
the outlet. 

The stream function contours, illustrated in Figure lqa),  are scaled to lie between 0.0 and 2.0 at 
the lower and upper walls, respectively. Compared with DenniP4 2D (+, o) solution, the gyres 
occupy the same locations, but recirculation is stronger in the present scheme. In addition, the 
throughflow expands slightly less after it passes the mid-point of the reservoir, than in Dennis’ 
solution, although agreement is exact as the flow contracts and forms its characteristic bulbous 
shape, before it exits through the outlet. Comparison with Borthwick and Barber’sJ6 
Navier-Stokes simulation again shows good agreement, but strength of recirculation is notice- 
ably overpredicted (although Borthwick and Barber obtained weaker recirculation than Dennis). 
The throughflow jet also shows less expansion in the later half of the basin, and reattachment of 
the separation streamline is nearer the outlet in the present depth-averaged (+, o) scheme. Since 
neither DennisJ4 nor Borthwick and BarberJ6 included inlet and outlet passageways at this 
Reynolds number, the stronger recirculation, and marginally narrower throughflow predicted 
herein, could be attributed to the more parabolic inlet velocity profiles, generated as the flow 
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Figure 9. Reservoir meshes based on Denni~”~  geometry: (a) physical mesh; (b) transformed mesh 

travels through the inlet stem. This supports the findings of the backward-facing step validation 
test, where more parabolic profiles gave longer recirculation lengths. As mentioned above, the 
results show closest agreement to Barber’s3’ boundary-fitted, primitive variable approach. 
Positions of the gyres are closely matched and their strength is very similar. Throughflow 
contours are also identical, and, although reattachment occurs at slightly different positions, this 
is probably caused by plotting errors due to grid resolution. The vorticity contours in 
Figure lqb) indicate steep gradients of vorticity a t  the centre of the throughflow and close to  the 
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Figure 10. Predictions for Re,= 10, using a 61 x 61 mesh, Dennis' geometry: (a) stream function contours; (b) vorticity 
contours; (c) velocity vectors 
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Figure 1 I .  Velocity profiles across reservoir for Rel=  10, Dennis’ geometry 

side walls. Loops of high vorticity are also evident at the inlet, and these loops spread out either 
side of the throughflow and push towards the outlet. Most of this vorticity exits through the 
outlet, but some is squeezed back into the basin and forms the bulging contours around the sharp 
corners. The velocity vectors plotted in Figure 1qc) provide a useful picture of the expansion and 
contraction of the jet as it enters and then leaves the reservoir, and clearly illustrate the stagnation 
points at the centre of each gyre. 

Even so, a close examination of the velocity profiles reveals discrepancies between the models. 
Figure 1 1 illustrates profiles of the non-dimensionalized U-velocity component along the line 
bisecting the inlet and outlet at the mid-section of the reservoir. Results from the present scheme 
are plotted alongside those of Borthwick and BarberJ6 and Barber.3S Overall agreement is 
satisfactory, especially in the region between the throughflow and the centre of the gyres. 
However, the present scheme predicts higher velocities at the centre of the throughflow and in the 
outer portion of the gyres, near the walls. Again, this may be explained by the more parabolic inlet 
profiles of the present scheme. Although Barber’s3’ geometry does include an inlet stem, velocity 
across the inlet is fixed at 0-1 m/s, whereas the present scheme is less restrictive since the stream 
function condition at the inlet allows the velocity to develop as part of the flow. Figure 11 
indicates that little change occurs in predicted velocity patterns obtained by the coarse and fine 
meshes, except for a reduction in centreline velocity in the latter case. 

Further results have been obtained for an inlet Reynolds number of 200. Figure 12 illustrates 
the flow pattern at a steady-state time of 162 s. The throughflow jet streamlines are almost exactly 
parallel from the inlet to the outlet where there is a final slight divergence before the flow 
accelerates into the outlet stem. Two vortices may be observed tightly rolled up either side of the 
main flow jet close to the outlet. An additional pair of slower rotating gyres are visible in the main 
body of the reservoir. 

Results using Mills’37 geometry. The second geometry, involving asymmetric inlet and outlet 
positions, is similar to that devised by Mills,37 who proposed an iterative integral technique for 
solving 2D flows in a circle at  very low inlet Reynolds numbers. Mills was able to obtain solutions 
for ReI up to 7.5, but noted that numerical instability set in at ReI=15. Later, Borthwick and 
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Figure 12. Predictions for Re,=200, using a 61 x 61 mesh, Dennis’ geometry: (a) stream function contours; (b) vorticity 
contours; (c) velocity vectors 
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\axis of symmetry 

Figure 13. Reservoir definition based on MiW3’ geometry 

Barberj6 extended the cases up to a Reynolds number of 200. They found that two gyres formed 
for 2 < Re, < 25, but these increased to four by Rel = 100. At Rel = 200, their solution broke down 
due to the emergence of small vortices in the shear layers at the edges of the throughflow stream. 
Once these vortices reached the outlet, the steep vorticity gradients led to instability. Again, 
Barberj5 used some of these data to verify his depth-averaged non-orthogonal (U, V, [) model. In 
this paper, results from the non-orthogonal depth-averaged ($, o) model will be compared with 
Borthwick and Barber’s data at ReI=25, 100 and 200. 

As portrayed in Figure 13, the circular reservoir contains a single inlet and a single outlet 
placed asymmetrically so that their centrelines are separated by an angle of 7z/8 radians. The 
width of the inlet and outlet is 0.00147 m. All other conditions are the same as before; with the 
reservoir having a radius of 0.75 m, a water depth of 0.1 m and the mean inlet velocity equal to 
0-1 m/s. Consequently, the lower and upper wall values of stream function are 00  and 0.00147, 
respectively. The physical mesh generated for this geometry is shown in Figure 14, where it is 
evident that the mesh inflexion points in the physical domain are situated so as to give 
a reasonably square interior mesh (i.e. the inflexion points are not quite evenly distributed around 
reservoir perimeter). 

Figure 15 shows results obtained for an inlet Reynolds number of 25, using a 61 x 61 mesh with 
the donor cell method applied to the advective terms in the vorticity transport equation. No 
instabilities were experienced on the approach to steady state and so there was no requirement for 
spatial filtering. The scaled stream function plots show almost exact agreement with the analo- 
gous 2D Navier-Stokes model presented by Borthwick and Barber,j6 although the throughflow 
is a little more compressed in the present scheme. It is not possible to scale vorticity plots to 
match those of Borthwick and Barber’s, since the authors did not specify the maximum vorticity 
in the field, but in Figure 15(b), the vorticity contours have been drawn at  similar intervals to 



438 A. G .  L. BORTHWICK AND E. T. KAAR 

Figure 14. Reservoir meshes based on Mills’37 geometry: (a) physical; (b) transformed 

allow a qualitative comparison. Moreover, the zero vorticity lines can be compared directly, and 
are seen to occupy an identical position to that given by Borthwick and Barber. Agreement with 
Barber’s3’ depth-averaged ( U ,  V,  C) boundary-fitted scheme is also good, although Barber 
predicts weaker recirculation in the lower gyre. Figure 16 shows the non-dimensionalized velocity 
profile across the reservoir. Here, the component of U-velocity normal to the axis of symmetry of 
the reservoir is plotted against radial distance from the centre along this line of symmetry. That is, 
Figure 16 is a non-dimensionalized plot of U‘= U cos(nll6) against y ‘=y  cos(n/l6), where n/16 is 
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Figure 15. Predictions for R e , = 2 5 ,  using a 61 x61 mesh, Mills’ geometry: (a) stream function contours; (b) vorticity 
contours; (c) velocity vectors 
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Figure 16. Velocity profiles across reservoir for Re,=25, Mills’ geometry 

the angle between the y-axis and the line of symmetry of the reservoir. Agreement is satisfactory 
everywhere, although the present scheme again shows a higher throughflow velocity than 
Borthwick and Barber’s model. 

At late times, long after reaching overall steady state, a small build up of spurious vorticity 
occurred close to the lower, left-hand inflexion point. At first glance, these spurious effects seemed 
to be somewhat anomolous; they occurred in a region where the stream function and vorticity 
gradients are very shallow, and the velocities are small. These could be due to an accumulation of 
truncation errors in the computation of vorticity values close to the points of inflexion, where 
extrapolation and interpolation techniques have to be applied, but the errors could not be 
eradicated with improved interpolation. A single pass of the spatial filter successfully eliminated 
the oscillations, but was not considered necessary because the effect occurred long after steady 
state and did not significantly disturb the flow field. 

The final plots in Figure 17 show results for an inlet Reynolds number of 100, using the fine 
mesh. The stream function contours demonstrate that a second pair of very slow, counter rotating 
gyres occurs near the inlet. Additional contours of zero vorticity near the walls also indicate the 
presence of these gyres. Comparison with Borthwick and Barber’sj6 results shows that predic- 
tions 6obtained using the fine mesh are subject to some numerical diffusion at this Reynolds 
number; the secondary gyres are not as large as those obtained by the Navier-Stokes solver. 
Again, the vorticity plots confirm this behaviour. Even though the overall patterns agree well, the 
zero vorticity lines spread out further from the inlet, and around the left-hand walls, indicating 
smaller recirculation zones. Although the size of the secondary gyres is underpredicted, the 
primary gyres occupy the same locations as those given by Borthwick and Barber. The upper 
recirculation zone has the same strength in both cases, but the present scheme predicts a slightly 
weaker lower gyre. It is interesting to note that Barber’s primitive-variable model also produces 
a weaker lower gyre (at Re, = 25) than the corresponding Navier-Stokes solution. This indicates 
that the two boundary-fitted, depth-averaged schemes follow the same trends. 
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Figure 17. Predictions for Rel= 100, using a 61 x 61 mesh, Mills’ geometry: (a) stream function contours; (b) vorticity 
contours; (c) velocity vectors 
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CONCLUSIONS 

This paper presents details of a unique non-orthogonal depth-averaged (JI, o) numerical model 
for predicting flows in shallow reservoir and river environments. It was verified against alterna- 
tive semi-analytical, numerical and experimental data for laminar flow over a backward-facing 
step in a rectangular channel and jet-forced flow in a circular reservoir at low inlet Reynolds 
numbers. The results confirm that the non-orthogonal depth-averaged ($, o) solver is able to 
predict separated, recirculating flows with reasonable accuracy. 

Laminar flow past a backward-facing step was studied for inlet Reynolds numbers between 46 
and 229. It is a well-documented test for the presence of artificial viscosity, and allows a simple 
grid to be used. Here it demonstrated that no significant artificial viscosity was introduced by the 
donor cell method at low Reynolds numbers below 100 using a 141 x 31 fine mesh. Second-order 
upwind differencing led to shorter recirculation lengths, which indicated higher levels of numer- 
ical diffusion. In order to test the performance of those additional terms related to physical mesh 
curvature the depth-averaged (JI, w )  model simulated jet-forced flow in a circular reservoir. Flow 
separation at the inlet of the reservoir promoted large zones of recirculation, related to the 
non-linear advective terms in the vorticity-transport equation (therefore allowing another assess- 
ment of artificial viscosity due to upwind differencing). Although agreement with an alternative 
numerical scheme presented by Borthwick and Barber36 was excellent for 10 < ReI < 100, at inlet 
Reynolds numbers less than 10 large stresses in the vicinity of corner point singularities caused 
oscillations which tended to destabilize the solution. At ReI x 100, artificial viscosity became 
evident. 

The rigid-lid condition is perhaps the major drawback of the depth-averaged ($, a) model. 
Nevertheless, in many cases, such as lakes or reservoirs, variations in the free surface are 
negligible and the (JI, o) formulation has some possible advantages over alternative primitive 
variable approaches. The three variable (V, V, [) system is reduced to two variables which are 
suited to a non-staggered mesh. Moreover, the depth-averaged (JI, w )  formulation can lead to 
simpler and possibly more accurate boundary conditions. 

For efficient implementation on vector or parallel computers, several improvements are worth 
making to the numerical solution of the transformed ($, o) shallow water equations. The 
transformed depth-averaged stream function equation is elliptic and is suited to a fast solver, such 
as the multigrid technique. As indicated by Wilders et al.,' the recursive solution of tridiagonal 
matrices in AD1 schemes reduces the speed on vector computers. Consequently, a fully implicit 
technique, such as the preconditioned conjugate gradients method used by Wilders et a/., is 
recommended for solving the vorticity transport equation on a vector computer. Alternatively, 
multiprocessor architecture can be exploited in solving the transformed ($, o) shallow water 
equations explicitly, making use of domain decomposition. 
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APPENDIX 

Coeficients in curvilinear (JI, w )  shallow wafer equations 

defined as follows: 
The coefficients in the non-orthogonal depth-averaged stream function equation (1 1) are 

1 1 
J J o=- (Y$x-x<Sy),  2=- (x,Sy-y,bx), 

in which 

6x=a X c e - 2 8 X a + Y  X,,' ~Y=aYcc-2PYc,+YY,,? 
1 1 
D D bD =- (/? D,-yD,) and zD=- ( fi D,-a D<). 

In the non-orthogonal depth-averaged vorticity transport equation (12) each of the effective stress 
terms, T,,, Txy and T y y ,  is multiplied by coefficients resulting from derivative operations with 
respect to x and y .  The only difference occurs in the definition of the various coefficients. For 
T,, and Tyy they read: 

A = X,Y , ,  B =x<y,+x,y<, r=x<Y,,  

1 1 
s=-(YeS2x-x$2y), J T=j(x,&y-Y,6,x) 3 

where 
8zx = A x 55 - Bxc, + I- x4,, 8 2 y  = AYt< - B Ye, + TY,, 9 

X Y 
Dx- -+Y,D,-Y$,), TDy = 2 ( x  ,, D - x D ,, 1, 

and 

Similarly the coefficients for Txy are given by 

where 

and 
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